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... an approximation by Taylor expansion
Hadronic fluctuations at non-zero density ...
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Lattice QCD at non-zero temperature (and density)

≈ 108 degrees of freedom

• QCD partition function: 

Z(V , T , µ) =
∫

DADψDψ̄ exp{−SE}

SE =
∫ 1/T

dx0

∫

V
d3xLE(A, ψ, ψ̄, µ)

0

→
≈ 106 lattice points, 

Monte Carlo integration: 

• Geometry of space-time: N3
s × Nt

}a

1/T

= Nta

V 1/3 = Nsa

account for:
• finite volume effects
• dimension 4 operatoren

rather large lattice spacings→
Ns/Nt ! 4

(4d - torus)

use improved action (p4fat3)→
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Lattice QCD at non-zero temperature (and density)

Z(V, T, µ) =
∫

DADψDψ̄ exp{SF (A, ψ, ψ̄) − βSG(A)}

=
∫

DA det[M ](A, µ) exp{−βSG(A)}

Interpretation as probability 
distribution is necessary for 

MC-integration
complex for µ > 0

• direct MC-simulation for              not possibleµ > 0

perform a Taylor expansion 
around → µ = 0
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The Taylor expansion method

• start from Taylor expansion of the pressure, 
p

T 4
=

1
V T 3

lnZ(V, T, µu, µd, µs) =
∑

i,j,k

cu,d,s
i,j,k

(µu

T

)i (µd

T

)j (µs

T

)k

few times nuclear
matter density

∼

T

∼ 190MeV

µB

quark-gluon 
plasma

deconfined,
       symmetric

hadron gas
confined,

      broken color-
superconductor

χ-

χ-

method works 
for small µ/T

the convergence region
remains to be determined 

non-perturbatively

• no sign problem: 
all simulations are done at µ = 0
cu,d,s

i,j,k ≡
1

i!j!k!
1

V T 3

·
∂i∂j∂k ln Z

∂(µu

T
)i∂(µd

T
)j∂(µs

T
)k

∣∣∣∣∣
µu,d,s=0

• method is straight forward: 
all terms can be generated automatically
Allton et al., PRD66:074507,2002;
Allton et al., PRD68:014507,2003;
Allton et al., PRD71:054508,2005.

• calculate expansion coefficients for fixed temperature 
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• use unbiased, noisy estimators to calculate
  see C. Miao, CS, PoS (Lattice 2007) 175.

• measure currently up to O(µ8) ←→ (Nt = 4)
O(µ4) ←→ (Nt = 6)

mq = ms/10• line of constant physics:
                                 (physical strange quark mass)

→
cu,d,s

i,j,k

• expansion coefficients           are related to B,S,Q-fluctuations

nB =
∂(p/T 4)
∂(µB/T )

=
1
3
(nu + nd + ns)

nS =
∂(p/T 4)
∂(µS/T )

= −ns

nQ =
∂(p/T 4)
∂(µQ/T )

=
1
3
(2nu − nd − ns)

µu =
1
3
µB +

2
3
µQ

µd =
1
3
µB −

1
3
µQ

µs =
1
3
µB −

1
3
µQ − µS

• choice of                is equivalent to µu ≡ µd µQ ≡ 0

cu,d,s
i,j,k

The Taylor expansion method 6



B,Q,S fluctuations (at           ) 7

χX
2 =

1
V T 3

〈
N2

X

〉
= 2! cX

2

χX
4 =

1
V T 3

(〈
N4

X

〉
−

〈
N2

X

〉2
)

= 4! cX
4

χX
6 =

1
V T 3

(〈
N6

X

〉
− 15

〈
N4

X

〉 〈
N2

X

〉
+ 30

〈
N2

X

〉3
)

= 6! cX
6

• We define fluctuations of charge X as
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small cut off effects in the transition region (similar to e-3p, p, ...) →
general pattern can be understood by the singular behavior of the free energy→

χB
2n ∼

∣∣∣∣
T − Tc

Tc

∣∣∣∣
2−n−α

, α ≈ −0.25

χB
2 χB

4dominated by the regular part, develops a cusp.

µ = 0
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M. Cheng et al., PRD 79 (2009) 074505



B,Q,S fluctuations (at           ) 8µ > 0

χB

T 2
= 2cB

2 + 12cB
4

(
µB

T

)2 χQ

T 2
= 2cQ

2 + 2cBQ
22

(
µB

T

)2

evidence for a critical point ?→
Seeing „true“ singular behavior as a signal for a critical 

point requires large volumes and high order Taylor expansions
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B,Q,S fluctuations (at           ) 9µ > 0

evidence for a critical point ?→
Seeing „true“ singular behavior as a signal for a critical 

point requires large volumes and high order Taylor expansions
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B,Q,S fluctuations (at           ) 10µ > 0
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Contour plots:

χB

T 2
= 2cB

2 + 12cB
4

(
µB

T

)2

+ 30cB
6

(
µB

T

)4

Taylor 6th order: Pade [2,2]:
χB

T 2
=

2c2c4 + (12c2
4 − 5c2c6)

(µB

T

)2

c4 − 5
2
c6

(µB

T

)2

µB µB

T T

does resummation of coefficients help ?→
similar results have been obtained by Gavai, Gupta, PRD 78 (2008)114503.



Hadronic Correlations (at           ) 11
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→
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the resonance gas below Tc 

→

µ = 0

small cut-off effects →



Hadronic Correlations (at           ) 12µ > 0

CBS/S ≡ −3
χBS

11

χS
2

= −3
〈BS〉 − 〈B〉〈S〉
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Hadronic Correlations (at           ) 13µ > 0

CBS/S ≡ −3
χBS

11

χS
2

= −3
〈BS〉 − 〈B〉〈S〉

〈S2〉 − 〈S〉2
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2

T = 170 MeV and zero chemical potential, µB = 0.
As µB is increased, the freeze-out temperature decreases
[14] and, consequently, strange baryons steadily gain fa-
vor relative to antikaons, so CBS increases. As this
trend continues, only very few antibaryons are present so
the (positive) strangeness is carried primarily by kaons
and compensated by Λ and Σ hyperons. We then have
〈Λ + Σ〉 ≈ 〈K〉 and so CBS ≈ 3

2 . This significant depen-
dence of CBS on the hadronic environment is in sharp
contrast to the simple quark-gluon plasma where the cor-
relation coefficient remains strictly unity at all tempera-
tures and chemical potentials.
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FIG. 1: The correlation coefficient CBS = σBS/σ2
S for a

hadron gas (including all species up to the Ω−) at freeze-
out, shown as a function of the baryon chemical potential
µB (with the temperature T decreasing from 170 MeV as µB

is increased, as found in Ref. [14]). Also shown is the corre-
sponding result for an ideal quark-gluon plasma (dashed line).

Whether the chromodynamic system, with respect to
its baryon-strangeness correlations, does in fact appear as
an assembly of elementary quasiparticles can be checked
by lattice calculations. We thus note that in statistical
equilibrium the correlation coefficient can be expressed
as a ratio of susceptibilities, CBS = −3χBS/χSS , which
in turn are second derivatives of the free energy with
respect to the chemical potential(s),

χBS = −
1

V

∂2F

∂µB∂µS
, χSS = −

1

V

∂2F

∂µ2
S

. (4)

In terms of the basic flavor densities u, d, s we thus have

CBS = 1 +
χds + χus

χss
. (5)

At µB = 0, the mixed flavor susceptibilities generally
tend to be relatively small above Tc [15]. Indeed, using
the values χff ′ extracted at T = 1.5 Tc by Gavai et al.

[16], we obtain (χus + χds)/χss = 0.00(3)/0.53(1) % 1.
These results were obtained in a quenched approxima-
tion, but the effect of sea quarks is expected to be

marginal above Tc [16]. We may thus surmise that
the lattice system has CBS ≈ 1, suggesting that the
quark flavors are uncorrelated, as in the ideal quark-gluon
plasma. (However, the presence of pure gluon clusters
cannot be ruled out by this diagnostic.) It would obvi-
ously be of interest to move the lattice calculations be-
yond the quenched approximation.

Since the ratio of strange to non-strange susceptibili-
ties, χss/(χuu + χdd), obtained from lattice QCD agrees
with that of a hadron gas right at the critical tempera-
ture Tc [17], it would be interesting to see what lattice
QCD would yield for CBS at this temperature. Unfortu-
nately, to our knowledge, no off-diagonal susceptibilities
involving strange quarks have yet been calculated. How-
ever, the available results for light quarks [15] indicate
that the off-diagonal susceptibilities are smaller than the
diagonal ones by a factor of twenty at Tc. Thus, if flavor
symmetry holds, the lattice value of CBS would differ
from that of the hadron gas already at Tc. We also note
that the vanishing of the off-diagonal susceptibilities, and
hence the unit value of CBS , does not conflict with the
existence of hadron-like resonances that have been identi-
fied well above Tc [4–6], since their large masses (of more
than 2 GeV) make them insignificant near Tc.

It is important to recognize that both the calculated
equation of state [2] and the observed collective flow
[12, 13] indicate that the system cannot be merely an
assembly of weakly interacting elementary quarks and
gluons. However, the various apparently conflicting fea-
tures might be reconciled if the system were to organize
itself into an assembly of weakly interacting quasipar-
ticles, such as the picture emerging from QCD by the
application of resummation techniques [18].

Recently there has appeared a model that purports to
explain both the equation of state as obtained on the
lattice as well as the large flow observed in heavy-ion
collisions [7–9]. The model describes the chromodynamic
system as a gas of massive quarks, antiquarks, and gluons
together with a myriad of their bound states generated
by a screened Coulomb potential. In order to assess the
consistency of this model with present lattice results, we
estimate the ratio CBS in such a scenario.

We base our estimates on Ref. [8] in which the tempera-
ture dependence of the screening length and the effective
masses were obtained by parametrizing lattice results.
The resulting attraction produces a total of 749 bound
states, of which only the color-triplet sg and the color-
singlet qs̄ states (and their conjugates) are of relevance
here. (The color-hexaplet sg states as well as the diquark
states are very weakly bound and dissolve entirely at the
temperature 1.5 Tc considered here). There are 4 π-like
(spin-singlet) and 12 ρ-like (spin-triplet) qs̄ states as well
as 18 sg states (and their conjugates). The abundancies
of these states are estimated in a grand canonical ensem-
ble with vanishing chemical potentials. The qs̄ multiplets
carry no baryon number and thus contribute only to σ2

S ,

Lattice

Koch, Majumder, Randrup, PRL 95 (2005) 182301

Crational
BS = 1 +

cq,s
1,1 + cq,s

3,1(µq/T )2 + cq,s
5,1(µq/T )4

2cq,s
0,2 + 2cq,s

2,2(µq/T )2 + 2cq,s
4,2(µq/T )4



Radius of Convergence 14
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Radius of Convergence 15
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Summary 17

• Taylor expansion coefficients show small cutoff effects (with improved p4fat3 
action)

• partial sums of Taylor expansion have to be taken with care,  a re-summation 
(Pade) might help

• second order expansion of              indicate growth of correlations below Tc 
(compatible with HRG)

• the radius of convergence determines the position of the CEP

• including 6th order in the approximation of the convergence radius will 
decrease approximations for          and
  

• warning: shown results mostly                  and masses are not physical

CBS/S

T CEPµCEP
B

Nτ = 4



CBS/S ≡ −3
χBS
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Koch, Majumder, Randrup (`05)

Hadronic Correlations (at           ) 18µ > 0
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Compressibility 19
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Isentropic Trajectories 20

 180

 200

 220

 240

 260

 280

 300

 320

 0  100  200  300  400  500  600

µB[MeV]

T[MeV]

S/NB=300
45
32


